101 research outputs found

    An Empirical Investigation of Global and Local Normalization for Recurrent Neural Sequence Models Using a Continuous Relaxation to Beam Search

    Full text link
    Globally normalized neural sequence models are considered superior to their locally normalized equivalents because they may ameliorate the effects of label bias. However, when considering high-capacity neural parametrizations that condition on the whole input sequence, both model classes are theoretically equivalent in terms of the distributions they are capable of representing. Thus, the practical advantage of global normalization in the context of modern neural methods remains unclear. In this paper, we attempt to shed light on this problem through an empirical study. We extend an approach for search-aware training via a continuous relaxation of beam search (Goyal et al., 2017b) in order to enable training of globally normalized recurrent sequence models through simple backpropagation. We then use this technique to conduct an empirical study of the interaction between global normalization, high-capacity encoders, and search-aware optimization. We observe that in the context of inexact search, globally normalized neural models are still more effective than their locally normalized counterparts. Further, since our training approach is sensitive to warm-starting with pre-trained models, we also propose a novel initialization strategy based on self-normalization for pre-training globally normalized models. We perform analysis of our approach on two tasks: CCG supertagging and Machine Translation, and demonstrate the importance of global normalization under different conditions while using search-aware training.Comment: Long paper at NAACL 201

    Learning-Based Single-Document Summarization with Compression and Anaphoricity Constraints

    Full text link
    We present a discriminative model for single-document summarization that integrally combines compression and anaphoricity constraints. Our model selects textual units to include in the summary based on a rich set of sparse features whose weights are learned on a large corpus. We allow for the deletion of content within a sentence when that deletion is licensed by compression rules; in our framework, these are implemented as dependencies between subsentential units of text. Anaphoricity constraints then improve cross-sentence coherence by guaranteeing that, for each pronoun included in the summary, the pronoun's antecedent is included as well or the pronoun is rewritten as a full mention. When trained end-to-end, our final system outperforms prior work on both ROUGE as well as on human judgments of linguistic quality.Comment: ACL 201

    Differentiable Scheduled Sampling for Credit Assignment

    Full text link
    We demonstrate that a continuous relaxation of the argmax operation can be used to create a differentiable approximation to greedy decoding for sequence-to-sequence (seq2seq) models. By incorporating this approximation into the scheduled sampling training procedure (Bengio et al., 2015)--a well-known technique for correcting exposure bias--we introduce a new training objective that is continuous and differentiable everywhere and that can provide informative gradients near points where previous decoding decisions change their value. In addition, by using a related approximation, we demonstrate a similar approach to sampled-based training. Finally, we show that our approach outperforms cross-entropy training and scheduled sampling procedures in two sequence prediction tasks: named entity recognition and machine translation.Comment: Accepted at ACL2017 (http://bit.ly/2oj1muX

    Visual Referring Expression Recognition: What Do Systems Actually Learn?

    Full text link
    We present an empirical analysis of the state-of-the-art systems for referring expression recognition -- the task of identifying the object in an image referred to by a natural language expression -- with the goal of gaining insight into how these systems reason about language and vision. Surprisingly, we find strong evidence that even sophisticated and linguistically-motivated models for this task may ignore the linguistic structure, instead relying on shallow correlations introduced by unintended biases in the data selection and annotation process. For example, we show that a system trained and tested on the input image without the input referring expression\textit{without the input referring expression} can achieve a precision of 71.2% in top-2 predictions. Furthermore, a system that predicts only the object category given the input can achieve a precision of 84.2% in top-2 predictions. These surprisingly positive results for what should be deficient prediction scenarios suggest that careful analysis of what our models are learning -- and further, how our data is constructed -- is critical as we seek to make substantive progress on grounded language tasks.Comment: NAACL2018 shor

    A Continuous Relaxation of Beam Search for End-to-end Training of Neural Sequence Models

    Full text link
    Beam search is a desirable choice of test-time decoding algorithm for neural sequence models because it potentially avoids search errors made by simpler greedy methods. However, typical cross entropy training procedures for these models do not directly consider the behaviour of the final decoding method. As a result, for cross-entropy trained models, beam decoding can sometimes yield reduced test performance when compared with greedy decoding. In order to train models that can more effectively make use of beam search, we propose a new training procedure that focuses on the final loss metric (e.g. Hamming loss) evaluated on the output of beam search. While well-defined, this "direct loss" objective is itself discontinuous and thus difficult to optimize. Hence, in our approach, we form a sub-differentiable surrogate objective by introducing a novel continuous approximation of the beam search decoding procedure. In experiments, we show that optimizing this new training objective yields substantially better results on two sequence tasks (Named Entity Recognition and CCG Supertagging) when compared with both cross entropy trained greedy decoding and cross entropy trained beam decoding baselines.Comment: Updated for clarity and notational consistenc

    Improved Variational Autoencoders for Text Modeling using Dilated Convolutions

    Full text link
    Recent work on generative modeling of text has found that variational auto-encoders (VAE) incorporating LSTM decoders perform worse than simpler LSTM language models (Bowman et al., 2015). This negative result is so far poorly understood, but has been attributed to the propensity of LSTM decoders to ignore conditioning information from the encoder. In this paper, we experiment with a new type of decoder for VAE: a dilated CNN. By changing the decoder's dilation architecture, we control the effective context from previously generated words. In experiments, we find that there is a trade off between the contextual capacity of the decoder and the amount of encoding information used. We show that with the right decoder, VAE can outperform LSTM language models. We demonstrate perplexity gains on two datasets, representing the first positive experimental result on the use VAE for generative modeling of text. Further, we conduct an in-depth investigation of the use of VAE (with our new decoding architecture) for semi-supervised and unsupervised labeling tasks, demonstrating gains over several strong baselines.Comment: camera read

    A Probabilistic Formulation of Unsupervised Text Style Transfer

    Full text link
    We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypothesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.Comment: ICLR 2020 conference paper (spotlight). The first two authors contributed equall

    An Empirical Investigation of Contextualized Number Prediction

    Full text link
    We conduct a large scale empirical investigation of contextualized number prediction in running text. Specifically, we consider two tasks: (1)masked number prediction-predicting a missing numerical value within a sentence, and (2)numerical anomaly detection-detecting an errorful numeric value within a sentence. We experiment with novel combinations of contextual encoders and output distributions over the real number line. Specifically, we introduce a suite of output distribution parameterizations that incorporate latent variables to add expressivity and better fit the natural distribution of numeric values in running text, and combine them with both recurrent and transformer-based encoder architectures. We evaluate these models on two numeric datasets in the financial and scientific domain. Our findings show that output distributions that incorporate discrete latent variables and allow for multiple modes outperform simple flow-based counterparts on all datasets, yielding more accurate numerical prediction and anomaly detection. We also show that our models effectively utilize textual con-text and benefit from general-purpose unsupervised pretraining

    Learning to Describe Differences Between Pairs of Similar Images

    Full text link
    In this paper, we introduce the task of automatically generating text to describe the differences between two similar images. We collect a new dataset by crowd-sourcing difference descriptions for pairs of image frames extracted from video-surveillance footage. Annotators were asked to succinctly describe all the differences in a short paragraph. As a result, our novel dataset provides an opportunity to explore models that align language and vision, and capture visual salience. The dataset may also be a useful benchmark for coherent multi-sentence generation. We perform a firstpass visual analysis that exposes clusters of differing pixels as a proxy for object-level differences. We propose a model that captures visual salience by using a latent variable to align clusters of differing pixels with output sentences. We find that, for both single-sentence generation and as well as multi-sentence generation, the proposed model outperforms the models that use attention alone.Comment: EMNLP 201

    Narrative Text Generation with a Latent Discrete Plan

    Full text link
    Past work on story generation has demonstrated the usefulness of conditioning on a generation plan to generate coherent stories. However, these approaches have used heuristics or off-the-shelf models to first tag training stories with the desired type of plan, and then train generation models in a supervised fashion. In this paper, we propose a deep latent variable model that first samples a sequence of anchor words, one per sentence in the story, as part of its generative process. During training, our model treats the sequence of anchor words as a latent variable and attempts to induce anchoring sequences that help guide generation in an unsupervised fashion. We conduct experiments with several types of sentence decoder distributions: left-to-right and non-monotonic, with different degrees of restriction. Further, since we use amortized variational inference to train our model, we introduce two corresponding types of inference network for predicting the posterior on anchor words. We conduct human evaluations which demonstrate that the stories produced by our model are rated better in comparison with baselines which do not consider story plans, and are similar or better in quality relative to baselines which use external supervision for plans. Additionally, the proposed model gets favorable scores when evaluated on perplexity, diversity, and control of story via discrete plan.Comment: Findings of EMNLP 202
    corecore